

SciChart © ABT Software Services Ltd 2011-2012

www.scichart.com / info@abtsoftware.co.uk

Creating a Real-Time Chart

Background

The following is a brief technical background to real-time charting using SCICHART. If you want to go

straight to the tutorial, scroll down to Creating the SCICHART Project.

The core framework

The UML diagram below represents the classes we will interact with in this article. A single chart

pane is created by SciChartSurface. This in turn binds to a DataSeriesSet which contains 0..N

DataSeries. The SciChartSurface also has a RenderableSeries property which may contain

0..N IRenderableSeries.

SCICHART determines how to render the data by the mapping of RenderableSeries to

DataSeries. The mapping is 1:1 and the index of each RenderableSeries maps to the same

SciChart © ABT Software Services Ltd 2011-2012

www.scichart.com / info@abtsoftware.co.uk

index of DataSeries. If you want to disable a series (do not render), simply set

IRenderableSeries .IsEnabled to false, for instance:

The Rendering Pipeline

SCICHART employs on-demand rendering and optionally allows multi-threaded data-appending to

DataSeries. What this means is, data can be appended to a DataSeries as fast as necessary and

on a background thread if desired, while the chart will only draw changes when they are available

and when the UI thread is free.

SciChart © ABT Software Services Ltd 2011-2012

www.scichart.com / info@abtsoftware.co.uk

SCICHART doesn't render continuously, but only when a change in the data has occurred, thus

making more efficient use of the CPU. SCICHART also listens to property changes on the chart itself,

so updating the color of a series, or the VisibleRange of an axis will also trigger a redraw.

This concept is nothing new, and has been used in computer games to create a game-loop where

rendering and processing are performed on different threads.

Creating the SCICHART Project

First up, if you haven't done so already, you'll have to download the SCICHART Executables. These

are available at http://www.scichart.com/wp-content/themes/scichart/core/trial-register.html

Next, create a new WPF Application in Visual Studio 2010. SCICHART targets .NET4.0 or Silverlight 5

as a minimum so ensure the framework version is 4.0.

Adding a SciChartSurface in XAML

SCICHART supports MVVM however this example will be completed with simple code-behind. We

still need to define the chart surface in xaml, so start off with the following markup in your main

window:

<!-- Define the SciChartSurface -->
<SciChart:SciChartSurface x:Name="sciChartSurface" Margin="10,10,10,5"
GridLinesPanelStyle="{StaticResource GridLinesPanelStyle}">

 <!-- Create an X Axis -->
 <SciChart:SciChartSurface.XAxis>
 <SciChart:NumericAxis Style="{StaticResource NumericAxisStyle}"
 AxisTitle="Time (Sec)" MinHeight="50"/>
 </SciChart:SciChartSurface.XAxis>

 <!-- Create a Y Axis -->
 <SciChart:SciChartSurface.YAxis>
 <SciChart:NumericAxis Style="{StaticResource NumericAxisStyle}" AxisTitle="Value"/>
 </SciChart:SciChartSurface.YAxis>

</SciChart:SciChartSurface>

This defines a SciChartSurface with an X and Y axis for numeric values. SCICHART also supports

DateTimeAxis however Numeric will cover any numeric type, such as int, long, double.

The styles for GridLinesPanel is defined as follows. Here we just set a background, margin and

border for the chart panel.

<!-- Style for GridLinesPanel (chart pane) -->
<Style x:Key="GridLinesPanelStyle" TargetType="SciChart:GridLinesPanel">
 <Setter Property="BorderBrush" Value="#FF888888"/>
 <Setter Property="BorderThickness" Value="1"/>
</Style>

SciChart © ABT Software Services Ltd 2011-2012

www.scichart.com / info@abtsoftware.co.uk

The Numeric Axes can also be styled as follows.

<!-- Style for NumericAxis -->
<Style x:Key="NumericAxisStyle" TargetType="SciChart:AxisBase">
 <Setter Property="TickTextBrush" Value="#333"/>
 <Setter Property="DrawMinorGridLines" Value="False"/>
 <Setter Property="DrawMinorTicks" Value="False"/>
 <Setter Property="TextFormatting" Value="0.0"/>
 <Setter Property="AutoRange" Value="True"/>
 <Setter Property="MajorGridLineStyle">
 <Setter.Value>

 <Style TargetType="Line">
 <Setter Property="Stroke" Value="#FF888888"/>
 </Style>
 </Setter.Value>
 </Setter>
 <Setter Property="MajorTickLineStyle">
 <Setter.Value>
 <Style TargetType="Line">
 <Setter Property="Stroke" Value="#FF888888"/>
 <!-- X2, Y2 define the depth of the tick -->
 <Setter Property="X2" Value="4"/>
 <Setter Property="Y2" Value="4"/>
 </Style>
 </Setter.Value>
 </Setter>
</Style>

The MajorGridLineStyle, MajorTickLineStyle properties allow styles to be applied to the

major grid and tick lines. AxisBase also supports MinorGridLineStyle, MinorTickLineStyle,

however these are not set as we opt to hide the minor lines in this example.

The TickTextBrush defines a brush for the axis text. AutoRange defines whether the axis should

scale to fit the data.

If AutoRange is true, you will not be able to apply interactivity ChartModifiers (e.g.

ZoomPanModifier, RubberBandXyZoomModifier) or programmatically set the VisibleRange

of the axis, however simply setting AutoRange to false enables these features.

Defining the Renderable Series

As previously mentioned, SCICHART has the concept of data and renderable series. To render some

data we must define N renderable series via the SciChartSurface.RenderableSeries

property (type ObservableCollection<IRenderableSeries>).The following example

defines three line series and sets them on the SciChartSurface.

<!-- Define the SciChartSurface -->
<SciChart:SciChartSurface x:Name="sciChartSurface" Margin="10,10,10,5"
GridLinesPanelStyle="{StaticResource GridLinesPanelStyle}">

 <!-- Create three RenderableSeries, which map 1:1 to the DataSeries created in code-behind -->
 <SciChart:SciChartSurface.RenderableSeries>
 <SciChart:FastLineRenderableSeries AntiAliasing="True" SeriesColor="#FFE13219"/>
 <SciChart:FastLineRenderableSeries AntiAliasing="True" SeriesColor="#FFFFA500"/>
 <SciChart:FastLineRenderableSeries AntiAliasing="True" SeriesColor="#FF4083B7"/>
 </SciChart:SciChartSurface.RenderableSeries>

SciChart © ABT Software Services Ltd 2011-2012

www.scichart.com / info@abtsoftware.co.uk

Styling the RenderableSeries

There are several properties which can be set on FastLineRenderableSeries to affect the

rendering, coloring and performance. The properties for a line series include SeriesColor,

AntiAliasing and ResamplingMode.

The primary series color is styled using SeriesColor property. It should be noted this is not a Brush,

but type System.Windows.Media.Color.

The AntiAliasing property can be turned on or off. There is a noticeable performance improvement

for very large datasets (>100k points) at the expense of visual acuity from drawing lines without

antialiasing. In this example we will leave AntiAliasing on.

The ResamplingMode is used to define how SCICHART resamples series before rendering. Valid

values are None, MinMax, Mid, Max, Min.

• NONE results in no resampling. SciChart will draw every point to the screen, even if there are

millions of points. This option should be used for small to medium datasets.

• MinMax (the default) will resample the series using Nyquist resampling. This results in a

visually accurate series but with the minimum points required to represent the original data.

This option should be chosen for large datasets.

• Max, Min, Mid are all suboptimum sampling methods. These will all result in some

degredation in the rendered series but could still be useful in high-performance scenarios

where accuracy is not so important.

Defining the Data

Creating a DataSeriesSet to fill the SciChartSurface is simple. Just declare a new

DataSeriesSet with the desired typeparams. The data is strongly typed and from now on, only

double-precision values can be appended.

In our example we will be creating the DataSeriesSet plus three DataSeries to map to the

three renderable series previously created as follows:

SciChart © ABT Software Services Ltd 2011-2012

www.scichart.com / info@abtsoftware.co.uk

private void CreateDataSetAndSeries()

{

 dataset = new DataSeriesSet<double, double>();

 // DataSeriesSet supports either FIFO or standard series

 // we let the user choose which one via the isFifoCheckBox on the toolbar
 if (isFifoCheckBox.IsChecked == true)

 {

 // FifoSize is the size of the circular buffer before old data is discarded
 dataset.AddFifoSeries(FifoSize);

 dataset.AddFifoSeries(FifoSize);

 dataset.AddFifoSeries(FifoSize);

 }
 else

 {

 dataset.AddSeries();
 dataset.AddSeries();

 dataset.AddSeries();

 }

 sciChartSurface.DataSet = dataset;

}

Appending Data to the DataSeries

Data is appended to the DataSeries by calling DataSeries.Append(x, y), where x and y are

individual values, or a collection of values. Internally SCICHART listens to events as data is appended

and triggers a redraw. Redrawing occurs on-demand, as soon as the UI thread is free. There is not

necessarily a 1:1 relationship between appends and redraws, but rather SCICHART will draw as soon

as the UI thread is free.

private void OnNewData(object sender, EventArgs e)

{

 // Compute our three series values
 double y1 = 3.0 * Math.Sin(((2 * Math.PI) * 1.4) * t);

 double y2 = 2.0 * Math.Cos(((2 * Math.PI) * 0.8) * t);

 double y3 = 1.0 * Math.Sin(((2 * Math.PI) * 2.2) * t);

 // Suspending updates is optional, and ensures we only get one redraw

 // once all three dataseries have been appended to
 using (sciChartSurface.SuspendUpdates())

 {

 // Get the series we previously created

 var series1 = dataset[0];
 var series2 = dataset[1];

 var sSeries3 = dataset[2];

 // Append x,y data

 series1.Append(t, y1);

 series2.Append(t, y2);
 series3.Append(t, y3);

 }

 // Increment current time

 t += dt;

}

SciChart © ABT Software Services Ltd 2011-2012

www.scichart.com / info@abtsoftware.co.uk

The code above appends the data to SCICHART. Firstly by wrapping multiple updates in a

sciChart.SuspendUpdates() call we ensure only one redraw at the end. Data values are

generating sample by sample using the sinewave equation. All three series are appended

simultaneously by calling DataSeries.Append(x, y).

Putting it all together

Putting it all together we add a Timer to our code-behind file to tick every 16ms (60Hz). The timer

tick executes the code above. We will use the DispatcherTimer which ticks on the UI thread,

however it is also possible to use a System.Timers.Timer which ticks on a background thread for

higher performance. This is fine, as the DataSeriesSet is thread-safe, and allows multi-threaded

access for the highest possible performance.

Running the enclosed example you should see something like the following:

The enclosed example has a checkbox to demonstrate the difference between FifoSeries and

standard DataSeries. By resetting the sample and unchecking Use Fifo?, then restarting you can

change the behaviour of the chart.

